第 27 筆
國家圖書館索書號: 系統編號: 89NTU00442021
出版年: 民90
研究生: 許昕 Hsin Hsiu
(以研究生姓名查詢國家圖書館索書號 ,未查獲者表國圖尚未典藏)
(以研究生姓名查詢國科會科資中心微片資料庫)
(連結至全國圖書聯合目錄) (連結至政大圖書館館藏目錄)
電子全文: 電子全文下載
論文名稱: 動脈系統藉共振機制傳遞血壓波之研究
論文名稱: A study of the Resonance Mechanism on the Arterial Blood
Pressure Wave Transmission
指導教授: 王唯工
學位類別: 博士
校院名稱: 國立臺灣大學
系所名稱: 電機工程學研究所
學號: D84523029
學年度: 89
語文別: 中文
論文頁數: 103
關鍵字: 血壓 blood pressure
共振 resonance
動脈硬化 arterial stiffness
聲波 sound wave
血液流體力學 hemodynamic
動脈 artery
高血壓 hypertension
氣功 chigong
全文影像: (依著作權法相關規定,以下全文影像僅限國家圖書館館內下載)
封面
目次
第一章緒論
第二章理論推導與比較
第三章橫拉主動脈對血壓波之影響¾動脈硬化生理意義之探討
第四章低頻共振聲波對循環運作之影響
4-1 波源設計與先遣實驗
4-2 與心跳速率同步之低頻聲波對心率變異率的影響
4-3 利用與心跳速率同步之低頻聲波來控制心跳速率
4-4 以二倍頻共振聲波
第五章結論與未來展望
參考資料
[摘要]
長期以來,循環系統疾病在已開發國家,一直是重要的死因。這代表現代科學對循環系統
雖然投入大量研究資源,但瞭解仍嫌不足,而無法對循環疾病的治療與預防產生助益。
現代循環理論是把動脈視為血液流動的管道,進而衍生出診斷、藥物、保健等種種醫
療產業。但在實際生理中,心臟僅用1.7瓦的輸出功率,來面對動脈系統的的繁複結構,克
服血液流經管壁的龐大阻力,並將血液推送至全身每一個角落。若把動脈當作血液流動的
管道,這種輸送效率是無法達成的。在我們的想法中,這也就是現代研究無法對循環系統
運作徹底瞭解的關鍵原因。
由於在主動脈的機械能量分配中,由管壁振動儲存的彈性位能佔了98%,遠超過血液
本身流動的2%,因此共振理論把動脈視為血壓波的傳遞系統:心臟將血液打出,撞擊在主
動脈弓的彎曲上,以增大血壓脈波的振幅;此血壓脈波經動脈傳遞至末端後,再藉由末端
血管床的小開口(opening),將血液推送至微血管網,完成供血的任務;各器官(或血管床
)則藉由與心跳的良好共振,以大幅提昇動脈系統血壓波的傳輸效率。由此概念,循環系
統的高輸送效率才能得到解釋。
在本研究中,我們從兩個角度來探討共振機制對動脈傳遞血壓波的影響:
一 橫拉主動脈實驗
由共振理論,由於動脈硬化會使血管彈性特性改變,破壞器官與心跳間的良好共振,
使血壓波傳遞效率降低,進而造成血壓的下降,這與目前高血壓理論的推論不同。在實驗
中,我們以橫拉主動脈模擬實際生理中的動脈硬化,以釐清此一爭議。
二 低頻共振聲波實驗
由共振理論,主動脈與各器官(或血管床)各自依其彈性特性,具有不同的共振頻率
,利用此一共振特性,各器官就好比機械式的天線(antenna),能有效率地接收由心臟送來
的血壓波。若我們由外界經適當介質,送入與心跳速率相近或其整數倍頻的振動聲波,同
樣由於上述共振特性,聲波的能量也有可能被動脈或器官吸收,進而影響循環系統的運作
。此一現象必須在”把動脈系統視為波傳遞系統”的前提下,才有可能獲得解釋。
在橫拉主動脈實驗中,我們觀察到血壓下降,同時由共振理論的數學模式,也可良好
預測其波形變化。而在低頻共振聲波實驗中,我們已可藉由心跳速率一倍及二倍頻率的振
動聲波,來控制大白鼠的心跳速率,並增大某特定諧波之振幅。這些成果對共振理論循環
系統架構的想法:(1)動脈系統為壓力波的傳遞系統 (2)共振機制協助提昇動脈壓力波的傳
遞效率,都提供了強有力的證據。
[摘要]
Circulatory diseases have long been main causes of mortality in developed
countries. It implies that although much effort in modern research was focused
on circulatory physiology, the understanding was so little that it does not
contribute much to the prevention of circulatory diseases.
In most hemodynamic theories, the artery is treated as pathway of blood
flow. However the heart has an output power of only 1.7 Watt in vivo. It is
hard to believe that with this small power, as well as the heart faces the
large resistance of the arterial system, it can still distribute the blood to
the whole body. It impresses us with its high transmission efficiency.
Since the elastic potential energy occupies more than 98% of mechanical
energy in the aorta, which is much larger than the 2% of the kinetic energy of
flowing blood, the resonance theory treats the arterial system as a pressure-
wave-transmitting one. The heart pushes the blood into the aorta, and the
blood collides on the vessel wall of the ascending aorta arch to generate
pulse pressure. This pulse pressure is transmitted to the microcirculatory
region along the artery, and pushes the blood into the capillary network
through small openings of the arteriole. The organic vascular beds resonate
with the heartbeat to further improve the transmission efficiency of the
pressure wave.
In this study, we discuss the effect of the resonance mechanism to the
arterial transmission from two aspects:
1. Aorta bending experiment - a simulation on arterial stiffening
From the resonance theory, arterial stiffness will alter the elastic
property of the aortic wall, and hence destroy the coupled resonance between
the organic vascular beds and the heartbeat. It will decrease the arterial
transmission efficiency for the pressure wave, thus lower the blood pressure.
It is an opposite inference to modern theories in hypertension. We pulled the
aorta transversely to simulate the arterial stiffness in vivo to observe the
changes of the blood pressure.
2. Effects of sound wave synchronized with the heartbeat on circulatory
regulation
From the resonance theory, the aorta and organic vascular beds own their
resonance frequencies respectively according to their elastic properties. Just
like a mechanical antenna, a vascular bed can efficiently receive pressure
wave coming from the heart. Similarly, if we send external sound wave with
frequency near the heart rate or its multiple frequency, its energy may be
absorbed by the arterial system, hence affect the hemodynamics.
In the former experiment, we observed the drop of the blood pressure, and
we can use the mathematical model of the resonance theory to predict the
alteration of the pressure waveform. In the latter experiment, we can use the
sound wave with frequency of the heart rate and its double frequency to steer
the heart rate of the rats. We can also increase the amplitude of some
harmonics in this way.
These results provide strong supports to the resonance theory that the
arterial system is a pressure-wave transmitting one, and that the resonance
mechanism help improve this transmission efficiency.
[參考文獻]
1. Milnor WR. Hemodynamics. Baltimore: Williams & Wilkins Co.; 1989.
2. Nichols WW, O’Rourke MF. McDonald’s blood Flow in Arteries, 4th ed.
London: Arnold; 1998.
3. Milnor WR, Bergel DH. Hydraulic power associated with pulmonary blood flow
and its relation to heart rate. Circ. Res. 1966; 19: 467-480.
4. Wang Lin YY, Chang SL, Wu YE, Hsu TL, Wang WK. Resonance-the missing
phenomenon in hemodynamics. Circ. Res. 1991; 69: 246-249.
5. Yu GL, Wang Lin YY, Wang WK. Resonance in the kidney system of rats. Am. J.
of Physiol. 1994; 267(H36): H1544-H1548.
6. Young ST, Wang WK, Chang LS, Kao TS. Specific frequency properties of the
renal and the supermesenteric arterial beds in rats. Cardiovas. Res. 1989; 23:
465-467.
7. Young ST, Wang WK, Chang LS, Kao TS. The filter properties of the arterial
beds of organs in rats. Acta. Physiol. Scand. 1992; 145: 401-406.
8. Wang Lin YY, Chang CC, Chen JC, Hsiu H, Wang WK. Pressure wave propagation
in arteries. IEEE Eng. Med. Biol. 1997; 16: 51-56.
9. Wang Lin YY, Lia WC, Hsiu H, Jan MY, Wang WK. Effect of length on the
fundamental resonance frequency of arterial models having radial dilatation.
IEEE T Bio.-Med. Eng.2000; 47: 313-318.
10. Hsiu H, Jan MY, Wang Lin YY, Wang WK. Effects of aorta bending and renal
ligation on the blood pressure: a simulation on arterial stiffening. IEEE Eng.
Med. Biol., in review.
11. Hsiu H, Jan MY, Wang Lin YY, Wang WK. Effects of weak external mechanical
force stimulation on the heart rate variability of rats. Am. J. Chin. Med. In
Review.
12. Hsiu H, Jan MY, Wang Lin YY, Wang WK. Influencing the heart rate of rats
with weak external mechanical stimulation. PACE, in revision.
13. Hsiu H, Luo KJ, Wang Lin YY, Wang WK. Semi-empirical resonance equations
for the artery with organs. Biomedical Engineering-Applications, Basis &
Communications 2000; 12(2): 12-20.
14. Jan MY, Hsiu H, Hsu TL, Wang Lin YY, Wang WK. The importance of the
pulsatile microcirculation in relation to hypertension. IEEE Eng. Med. Biol.
2000; 19(3): 106-111.
15. Wang WK, Lo YY, Hsu TL, Wang Lin YY. Resonance of organs with the heart.
In: Biomedical Engineering (An International Symposium. Edited by W. J. Young,
pp.259-297, New York: Hemishpere Publishing Corp., 1989.)
16. Wang WK, Hsu TL, Chen HL, Jan MY, Wang Lin YY. Blood pressure and velocity
relation in tissue. In: Biofluid Mechanics, Proc. Of the third international
symposium, 1994, pp.119-132.
17. Wang WK, Chen HL, Hsu TL, Wang Lin YY. Alteration of pulse in human
subjects by three Chinese herbs. Am. J. Chin. Med. 1994; 22(2): 197-203.
18. Wang WK, Hsu TL, Chang HC, Wang Lin YY. The effect of acupuncture Tsu San
Li(St-36) on the pulse spectrum. Am. J. Chin. Med. 1995; 23(2): 121-130.
19. Patel DJ, Janicki JS, Carew TE. Static anitropic elastic properties of the
aorta in living dogs. Circ. Res. 1969; 25:765-769.
20. Lamb H. Hydrodynamics, Ed 6. Cambridge: University Press; 1932.
21. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP.
Regional wave travel and reflections along the human aorta: a study with six
simultaneous micromanometric pressures. Circulation 1985; 72: 1257-1269.
22. O’Rourke M. Arterial stiffness, systolic blood pressure, and logical
treatment of aterial hypertension. Hypertension 1990; 15(4): 339-347.
23. London GM, Guerin AP. Influence of arterial pulse and reflected waves on
blood pressure and cardiac function. Am. Heart. J. 1999; 138(3 pt 2): 220-224.
24. Benetos A. Pulse pressure and cardiovascular risk. J. Hypertens.1999; 17 (
suppl. 5): s21-24.
25. Hsiu H, Jan MY, Wang Lin YY, Wang WK, Yu GL, Hsu TL. Effects of pulling
aorta on blood pressure and its implication in hypertension. Presented at
World Congress on Medical Physics and Biomedical Engineering, Chicago, 2000.
26. Jones RT, Laird JD. in Prospects for simulation and simulators of dynamics
systems, 151-162. New York: McMillan.
27. Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and
respiratory systems and their interaction in vertebrates. Physiol Rev 1999; 79(
3): 855-916.
28. Brown HF, DiFrancesco D, Noble SJ. How does adrenaline accelerate the
heart? Nature 1979; 280: 235-236.
29. Stein PK, Bosner MS, Kleiger RE, Conger BM. Heart rate variability: a
measure of cardiac autonomic tone. Am Heart J 1994; 127(5): 1376-1381.
30. Sayers BmcA. Analysis of heart rate variability. Ergonomics 1973; 16: 17-
32.
31. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural
regulation explored in the frequency domain. Circulation 1991; 84(2): 482-492.
32. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power
spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-
beat cardiovascular control. Science 1981; 213: 220-222.
33. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Pizzinelli P, Sandrone G,
Malfatto G, Dell’Orto S, Piccaluga E. Power spectral analysis of heart rate
and arterial pressure variabilities as a marker of sympatho-vagal interaction
in man and conscious dog. Cir Res 1986; 59(2): 178-193.
34. Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging: Potential
applications of fractals and chaos theory to senescence. JAMA 1992; 267: 1806-
1809.
35. Takeuchi H, Enzo A, Minamitani H. Circadian rhythm changes in heart rate
variability during chronic sound stress. Med. Biol. Eng. Comput. 2001; 39(1):
113-117.
36. Yin FCP. Ventricular / Vascular Coupling. New York: Springer-Verlag; 1987.
37. O’Rourke MF, Kelly RP. Wave reflection in the systemic circulation and
its implications in ventricular function. J. Hypertens. 1993; 11: 327-337.
38. Bassingthwaighte JB, Liebovitch LS, West BJ. Fractal Physiology. New York:
Oxford University Press; 1994.
39. Sopher SM, Camm AJ. Atrial fibrillation: maintenance of sinus rhythm
versus rate control. Am. J. Cardiol. 1996; 77: 24A-37A.
40. Hondeghem LM. Classification of antiarrhythmic agents and the two laws of
pharmacology, Cardiovasc. Res. 2000; 45: 57-60.
41. Jalife J, Antzelevitch C. Phase resetting and annihilation of pacemaker
activity in cardiac tissue. Science 1979; 206: 695-697.
42. Guevara MR, Glass L, Shrier A. Phase locking, period-doubling bifurcations,
and irregular dynamics in periodically stimulated cardiac cells. Science 1981;
214: 1350-1353.
43. Garfinkel A, Spano ML, Ditto WL, Weiss JN. Controlling cardiac chaos.
Science 1992; 257: 1230-1235.
44. Poon CS, Merrill CK. Decrease of cardiac chaos in congestive heart
failure. Nature 1997; 389: 492-495.
45. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR,
Stanley HE. Multifractory in human heartbeat dynamics. Nature 1999; 399: 461-
465.
46. O’rourke MF, Avolio AP, Stelliou V. The rhythm of running: can the heart
join in? Aust. NZ. J. Med. 1993; 23: 708-710.
47. Danielsson A, Landstrom U. Blood pressure changes in man during infrasonic
exposure. An experimental study. Acta. Med. Scand. 1985; 217(5): 531-535.
48. Andren L, Gindstedt G, Bjorkman M, Borg KO, Hansson L. Effect of noise on
blood pressure and ‘stress’ hormones. Clin. Sci. 1982; 62(2): 137-141.
49. Beckers F, Ramaekers D, Aubert AE, Cleemput van J, Droogne W, Vanhaecke J,
Ector H, Van de Werf F. Evolution of intracardiac heart rate variability of
the native sinus node in heart transplant patients. Medical & Biological
Engineering & Computing 37: Proceeding of the European Medical & Biological
Engineering Conference EMBEC’99, 1999; part 1: 556-557.
50. Lanuza DM, Grady K, Hetfleisch M, Johnson MR. Circadian rhythm changes in
blood pressure and heart rate during the first year after heart transplantation
. J. Heart Lung Transpl. 1994; 13(4): 614-623.
--------------
第 28 筆
國家圖書館索書號: 系統編號: 89NTU00442187
出版年: 民90
研究生: 姜智昂 Chiang Chi-Ang
(以研究生姓名查詢國家圖書館索書號 ,未查獲者表國圖尚未典藏)
(以研究生姓名查詢國科會科資中心微片資料庫)
(連結至全國圖書聯合目錄) (連結至政大圖書館館藏目錄)
電子全文: 電子全文下載
論文名稱: 動脈系統之頻率匹配
論文名稱: The Frequency Matching rule in Arterial system
指導教授: 王唯工 Wang Wei-Kong
學位類別: 碩士
校院名稱: 國立臺灣大學
系所名稱: 電機工程學研究所
學號: R88921150
學年度: 89
語文別: 中文
論文頁數: 80
關鍵字: 動脈系統 arterial
共振 resonance
徑向 radial
匹配 match
血壓波 pressure wave
諧波 harmonic
頻譜 spectrum
頻率 frequency
[摘要]
本研究以「徑向共振理論」為主軸,將生理解剖上出現的一些動脈管的結構,利用彈性管
來進行模擬。探討的對象包括不同材質管子的相接,以模擬動脈管不均質中,最簡化的狀
況。動脈一分為二,因這是動脈系統上最常見的分支結構。另有出現在四肢及頭部的環狀
結構,以及討論發展到n階的血管叢及不規則的血管形態。並配合上實驗的量測,以及應用
「徑向共振理論」來做的理論估測,在比較下顯示這理論的適用性。
接續上段之研究,若是再配合上生理上心臟端的訊號源,因它是呈現穩定的週期運動,故
可知道整個動脈系統的強度頻譜,在發生峰值的頻率應該要具有諧波的關係,才能夠在最
有效率的情況下使用心臟所供給的能量。從這樣的想法出發,並以「徑向共振理論」推導
這頻率匹配的條件。
最後再以生理上觀察到動脈血壓波的分布,以一些模擬上的條件來達成從動脈端過度到微
循環的方式。以及分別改變分支環(代替血管叢)和分支管,來了解主動脈接上分支動脈叢
時能量及頻率的再分配。
[摘要]
This research applies the Radial Resonance Theory to variety of the arterial
structures that would appear in the human's circulation This research
applies the Radial Resonance Theory to variety of the arterial structures that
would appear in the human's circulation system.
Then we use some kinds of elastic tubes to simulate the above structures
verifying the capability of the Radial Resonance Theory. First, for the non-
uniform property of the artery, we reduce the complexity by connect just two
different kinds of tubes together. Next, the most obvious way the arteries
generate is the one to two branches (bifurcation). We simulate this by
different length and boundary condition. Third, the loop-like artery
structures which appear in the legs, arms and the head. Also the N generation
artery structure and the asymmetric one would be discussed.
On the other hand, we know that the heart pumps the blood in an almost
periodically way. Thus the energy that heart support for the whole circulation
system would be in harmonic frequency in the view of signals. In order to have
the highest efficiency, we deduce that the spectrum of the artery system would
have a 'frequency matching "relationship with the source. This rule can also
be derived from the Radial Resonance Theory.
At last, we simulate the artery to the microcirculation by a simple way to
give an explanation for the physiological phenomenon. And the experiment that
control the branch circle and branch tube length to show the relationship
among the energy redistribution and frequency splitting.
[論文目次]
第一章 緒論
第二章 理論模型探討
2-1 前人研究相關模型
2-1-A Hales;"Windkessel"Model
2-1-B Poiseuill's equation
2-1-C Moens-Korteweg equation
2-1-D Navier-Stokes equation
2-1-E 類比電路模型
2-2 Womersley equation
2-3 共振理論
2-3-A 開端及演進
2-3-B 彈性管波動方程式推導
2-3-C 流量與壓力關係
第三章 實驗設備及步驟
3-1 實驗設備
3-2實驗方法與裝置
3-3 校正工作
第四章 不同分支管結構
4-1 兩段厚薄不同彈性管之連接
4-2 一分為二之結構
4-3環狀結構
4-4 任意二階型及不規則型分支探討
第五章 頻率匹配
5-1脈衝響應解和匹配條件
5-2 值的計算及其和 之關係
5-2-A 值的計算
5-2-B 和 之關係
5-3 實驗結果驗證
5-3-A 兩段不同材質相串
5-3-B 三段不同材質串聯
5-3-C 三段不同材質並聯
第六章 動脈到微循環&分支環
第七章 討論與結論
附錄A 血液循環常用觀念及術語
附錄B 文獻回顧
參考文獻
[參考文獻]
[1]Milnor W.R:Hemodynamics(2nd ed) WILLIAMS&WILKINS.(1989)
[2]McDonald.D.A .1974: Blood flow in arteries. 2nd edn.London:Edward Arnold
[3]Hamilton.W.F.and Dow.P.1939:An experimental study of the standing waves in
the pulse propagated through the aorta. American Journal of Physiology 125.48-
59
[4] Noodergraaf.A.Circulatory system Dynamics.Academic Press N.Y.(1978)
[5]Yu GL.Wang Lin YY and Wang WK:Resonance in the kidney system of rats.Am.J.
Physiol.267:H1544-8.1994
[6]Vascular dynamics : physiological perspectives / edited by N. Westerhof and
D.R. Gross New York : Plenum Press. c1989
[7]黃啟裕:主動脈血壓波與血流波的模擬與分析.國立台灣大學物理研究所.碩士論文.1998
[8]賴文哲:主動脈振動與天然頻率之探討. 國立台灣師範大學物理研究所.碩士論文.1996
[9]許昕:共振理論於長直管中流體行為之探討. 國立台灣大學電機研究所.碩士論文.1995
[10]陳忠誠:壓力波在血管中行進的模擬與探討. 國立台灣師範大學物理研究所.碩士論文.
1994
[11]羅熀哲:分支動脈叢間耦合作用之函數探討. 國立台灣師範大學物理研究所.碩士論文.
1994
[12]詹明宜:共振對血壓波之模擬.國立陽明醫學院醫學工程研究所.碩士論文1992
[13]徐清秀:彈性血管壓力波動方程式之初步應用. 國立台灣師範大學物理研究所.碩士論
文.2000
[14]張超群: 國立台灣師範大學物理研究所.碩士論文.1991
[15]Wang.W.K.Wang Lin.Y.Y.Hsu.T.L.and Ching. Y.:Some foundation of Pulse
feeling in Chinese Medicine.Advance in Bismedical Engineering Hemisphoen.
Washington.D.C p269-296(1989)
[16]Yuh-Ying Lin.C.C.Chiang.J.C.Chen.H.Hsiu.W.K.Wang :Pressure Wave Propagation
in a distensible tube arterial model .IEEE Engineering in Med.boil.Mag.pp51-56.
Jan1997.
[18]Shadwick RE.Goslin JM.Arterial mechanics in the fin whale suggest a unique
hemodynamic design.Am J Physiol. 1994 Sep;267(3 Pt 2):R805-18.
[19]Patel D.J..Janicki J.S..and Carew T.E:Static anitropic elastic properties
of the aorta in living dogs. Circ.Res.25:765-9.1969
[20]Burattini R. Gnudi G Computer identification of models for the arterial
tree input impedance:comparison between two new simple models and first
experimental results. Med Biol Eng Comput 1982 Mar;20(2):134-44
[21]Burattini R. Gnudi G Assessment of a parametric identification procedure
of simple models for left ventricular afterload. Med Biol Eng Comput 1983 Jan;
21(1):39-46
[22]Burattini R. Gnudi G. Westerhof N. Fioretti S Total systemic arterial
compliance and aortic characteristic impedance in the dog as a function of
pressure: a model based study.Comput Biomed Res 1987 Apr;20(2):154-65
[23]Burattini R. Di Carlo S Effective length of the arterial circulation
determined in the dog by aid of a model of the systemic input impedance.IEEE
Trans Biomed Eng 1988 Jan;35(1):53-61
[24]Burattini R. Campbell KB Modified asymmetric T-tube model to infer
arterial wave reflection at the aortic root.IEEE Trans Biomed Eng 1989 Aug;36(
8):805-14
[25]Campbell KB. Burattini R. Bell DL. Kirkpatrick RD. Knowlen GG Time-domain
formulation of asymmetric T-tube model of arterial system. Am J Physiol 1990
Jun;258(6 Pt 2):H1761-74
[26]Burattini R. Knowlen GG. Campbell KB Two arterial effective reflecting
sites may appear as one to the heart.Circ Res 1991 Jan;68(1):85-99
[27]Burattini R. Campbell KB Effective distributed compliance of the canine
descending aorta estimated by modified T-tube model.Am J Physiol 1993 Jun;264(
6 Pt 2):H1977-87
[28] Fogliardi R. Di Donfrancesco M. Burattini R Comparison of linear and
nonlinear formulations of the three-element windkessel model. Am J Physiol
1996 Dec;271(6 Pt 2):H2661-8
[29] Avolio AP. O'rourke MF. Mang K. Bason PT. Gow BS A comparative study of
pulsatile arterial hemodynamics in rabbits and guinea pigs .Am J Physiol 1976
Apr;230(4):868-75
[30]O'Rourke MF. Avolio AP Pulsatile flow and pressure in human systemic
arteries. Studies in man and in a multibranched model of the human systemic
arterial tree. Circ Res 1980 Mar;46(3):363-72
[31]Avolio AP. O'Rourke MF. Bulliman BT. Webster ME. Mang K Systemic arterial
hemodynamics in the diamond python Morelia spilotes. Am J Physiol 1982 Sep;243(
3):R205-12
[32]Avolio AP. Chen SG. Wang RP. Zhang CL. Li MF. O'Rourke MF Effects of aging
on changing arterial compliance and left ventricular load in a northern
Chinese urban community. Circulation 1983 Jul;68(1):50-8
[33]Nichols WW. Avolio AP. O'Rourke MF Ascending aortic impedance patterns in
the kangaroo: their explanation and relation to pressure waveforms. Circ Res
1986 Sep;59(3):247-55
[34] Nichols WW. O'Rourke MF. Avolio AP. Yaginuma T. Pepine CJ. Conti CR
Ventricular/vascular interaction in patients with mild systemic hypertension
and normal peripheral resistance. Circulation 1986 Sep;74(3):455-62
[35]Karamanoglu M. Gallagher DE. Avolio AP. O'Rourke MF Pressure wave
propagation in a multibranched model of the human upper limb. Am J Physiol
1995 Oct;269(4 Pt 2):H1363-9
[36]Hunter W. Noordergraaf A Can impedance characterize the heart? J Appl
Physiol 1976 Feb;40(2):250-2
[37]Li JK. Melbin J. Riffle RA. Noordergraaf A Pulse wave propagation.Circ Res
1981 Aug;49(2):442-52
[38]Campbell KB. Rhode EA. Cox RH. Hunter WC. Noordergraaf A Am J Functional
consequences of expanded aortic bulb: a model study. Physiol 1981 Mar;240(3):
R200-10
[39]Li JK. Melbin J. Noordergraaf A Directional disparity of pulse reflection
in the dog.Am J Physiol 1984 Jul;247(1 Pt 2):H95-9
[40] Campbell KB. Lee LC. Frasch HF. Noordergraaf A Pulse reflection sites
and effective length of the arterial system. Am J Physiol 1989 Jun;256(6 Pt 2):
H1684-9
[41]Laskey WK. Parker HG. Ferrari VA. Kussmaul WG. Noordergraaf A Estimation
of total systemic arterial compliance in humans.
J Appl Physiol 1990 Jul;69(1):112-9
[42]Li JK. Noordergraaf A Similar pressure pulse propagation and reflection
characteristics in aortas of mammals. Am J Physiol 1991 Sep;261(3 Pt 2):R519-21
[43]Berger DS. Li JK. Laskey WK. Noordergraaf A Repeated reflection of waves
in the systemic arterial system. Am J Physiol 1993 Jan;264(1 Pt 2):H269-81
[44]Frasch HF. Kresh JY. Noordergraaf A Wave transmission and input impedance
of a model of skeletal muscle microvasculature. Ann Biomed Eng 1994 Jan-Feb;22(
1):45-57
[45]Berger DS. Li JK. Noordergraaf A Differential effects of wave reflections
and peripheral resistance on aortic blood pressure: a model-based study.
Am J Physiol 1994 Apr;266(4 Pt 2):H1626-42
[46]Berger DS. Li JK. Noordergraaf A Arterial wave propagation phenomena.
ventricular work. and power dissipation. Ann Biomed Eng 1995 Nov-Dec;23(6):804-
11
[47]Stergiopulos N. Young DF. Rogge TR Computer simulation of arterial flow
with applications to arterial and aortic
stenoses.J Biomech 1992 Dec;25(12):1477-88
[48]Stergiopulos N. Tardy Y. Meister JJ Nonlinear separation of forward and
backward running waves in elastic conduits.
J Biomech 1993 Feb;26(2):201-9
[49]Stergiopulos N. Meister JJ. Westerhof N Simple and accurate way for
estimating total and segmental arterial compliance: the pulse pressure method.
Ann Biomed Eng 1994 Jul-Aug;22(4):392-7
[50]Stergiopulos N. Meister JJ. Westerhof N Evaluation of methods for
estimation of total arterial compliance.Am J Physiol 1995 Apr;268(4 Pt 2):
H1540-8
[51]Stergiopulos N. Meister JJ. Westerhof N Scatter in input impedance
spectrum may result from the elastic nonlinearity of the arterial wall.Am J
Physiol 1995 Oct;269(4 Pt 2):H1490-5
[52] Stergiopulos N. Meister JJ. Westerhof N Determinants of stroke volume
and systolic and diastolic aortic pressure.Am J Physiol 1996 Jun;270(6 Pt 2):
H2050-9
[53]Pythoud F. Stergiopulos N. Westerhof N. Meister JJ Method for determining
distribution of reflection sites in the arterial system.Am J Physiol 1996 Nov;
271(5 Pt 2):H1807-13
[54] Stergiopulos N. Westerhof BE. Westerhof N Physical basis of pressure
transfer from periphery to aorta: a model-based study.Am J Physiol 1998 Apr;
274(4 Pt 2):H1386-92
[55]Stergiopulos N. Segers P. Westerhof N Use of pulse pressure method for
estimating total arterial compliance in vivo.Am J Physiol 1999 Feb;276(2 Pt 2):
H424-8
[56] Stergiopulos N. Westerhof BE. Westerhof N Total arterial inertance as
the fourth element of the windkessel model. Am J Physiol 1999 Jan;276(1 Pt 2):
H81-8
[57]Latham RD. Westerhof N. Sipkema P. Rubal BJ. Reuderink P. Murgo JP
Regional wave travel and reflections along the human aorta: a study with six
simultaneous micromanometric pressures.Circulation 1985 Dec;72(6):1257-69
[58]Latham RD. Rubal BJ. Westerhof N. Sipkema P. Walsh RA Nonhuman primate
model for regional wave travel and reflections along aortas. Am J Physiol 1987
Aug;253(2 Pt 2):H299-306
[59] Latham RD. Rubal BJ. Sipkema P. Westerhof N. Virmani R. Robinowitz M.
Walsh RA. Ventricular/vascular coupling and regional arterial dynamics in the
chronically
hypertensive baboon: correlation with cardiovascular structural adaptation.
Circ Res 1988 Oct;63(4):798-811
[1]Milnor W.R:Hemodynamics(2nd ed) WILLIAMS&WILKINS.(1989)
[2]McDonald.D.A .1974: Blood flow in arteries. 2nd edn.London:Edward Arnold
[3]Hamilton.W.F.and Dow.P.1939:An experimental study of the standing waves in
the pulse propagated through the aorta. American Journal of Physiology 125.48-
59
[4] Noodergraaf.A.Circulatory system Dynamics.Academic Press N.Y.(1978)
[5]Yu GL.Wang Lin YY and Wang WK:Resonance in the kidney system of rats.Am.J.
Physiol.267:H1544-8.1994
[6]Vascular dynamics : physiological perspectives / edited by N. Westerhof and
D.R. Gross New York : Plenum Press. c1989
[7]黃啟裕:主動脈血壓波與血流波的模擬與分析.國立台灣大學物理研究所.碩士論文.1998
[8]賴文哲:主動脈振動與天然頻率之探討. 國立台灣師範大學物理研究所.碩士論文.1996
[9]許昕:共振理論於長直管中流體行為之探討. 國立台灣大學電機研究所.碩士論文.1995
[10]陳忠誠:壓力波在血管中行進的模擬與探討. 國立台灣師範大學物理研究所.碩士論文.
1994
[11]羅熀哲:分支動脈叢間耦合作用之函數探討. 國立台灣師範大學物理研究所.碩士論文.
1994
[12]詹明宜:共振對血壓波之模擬.國立陽明醫學院醫學工程研究所.碩士論文1992
[13]徐清秀:彈性血管壓力波動方程式之初步應用. 國立台灣師範大學物理研究所.碩士論
文.2000
[14]張超群: 國立台灣師範大學物理研究所.碩士論文.1991
[15]Wang.W.K.Wang Lin.Y.Y.Hsu.T.L.and Ching. Y.:Some foundation of Pulse
feeling in Chinese Medicine.Advance in Bismedical Engineering Hemisphoen.
Washington.D.C p269-296(1989)
[16]Yuh-Ying Lin.C.C.Chiang.J.C.Chen.H.Hsiu.W.K.Wang :Pressure Wave Propagation
in a distensible tube arterial model .IEEE Engineering in Med.boil.Mag.pp51-56.
Jan1997.
[18]Shadwick RE.Goslin JM.Arterial mechanics in the fin whale suggest a unique
hemodynamic design.Am J Physiol. 1994 Sep;267(3 Pt 2):R805-18.
[19]Patel D.J..Janicki J.S..and Carew T.E:Static anitropic elastic properties
of the aorta in living dogs. Circ.Res.25:765-9.1969
[20]Burattini R. Gnudi G Computer identification of models for the arterial
tree input impedance:comparison between two new simple models and first
experimental results. Med Biol Eng Comput 1982 Mar;20(2):134-44
[21]Burattini R. Gnudi G Assessment of a parametric identification procedure
of simple models for left ventricular afterload. Med Biol Eng Comput 1983 Jan;
21(1):39-46
[22]Burattini R. Gnudi G. Westerhof N. Fioretti S Total systemic arterial
compliance and aortic characteristic impedance in the dog as a function of
pressure: a model based study.Comput Biomed Res 1987 Apr;20(2):154-65
[23]Burattini R. Di Carlo S Effective length of the arterial circulation
determined in the dog by aid of a model of the systemic input impedance.IEEE
Trans Biomed Eng 1988 Jan;35(1):53-61
[24]Burattini R. Campbell KB Modified asymmetric T-tube model to infer
arterial wave reflection at the aortic root.IEEE Trans Biomed Eng 1989 Aug;36(
8):805-14
[25]Campbell KB. Burattini R. Bell DL. Kirkpatrick RD. Knowlen GG Time-domain
formulation of asymmetric T-tube model of arterial system. Am J Physiol 1990
Jun;258(6 Pt 2):H1761-74
[26]Burattini R. Knowlen GG. Campbell KB Two arterial effective reflecting
sites may appear as one to the heart.Circ Res 1991 Jan;68(1):85-99
[27]Burattini R. Campbell KB Effective distributed compliance of the canine
descending aorta estimated by modified T-tube model.Am J Physiol 1993 Jun;264(
6 Pt 2):H1977-87
[28] Fogliardi R. Di Donfrancesco M. Burattini R Comparison of linear and
nonlinear formulations of the three-element windkessel model. Am J Physiol
1996 Dec;271(6 Pt 2):H2661-8
[29] Avolio AP. O'rourke MF. Mang K. Bason PT. Gow BS A comparative study of
pulsatile arterial hemodynamics in rabbits and guinea pigs .Am J Physiol 1976
Apr;230(4):868-75
[30]O'Rourke MF. Avolio AP Pulsatile flow and pressure in human systemic
arteries. Studies in man and in a multibranched model of the human systemic
arterial tree. Circ Res 1980 Mar;46(3):363-72
[31]Avolio AP. O'Rourke MF. Bulliman BT. Webster ME. Mang K Systemic arterial
hemodynamics in the diamond python Morelia spilotes. Am J Physiol 1982 Sep;243(
3):R205-12
[32]Avolio AP. Chen SG. Wang RP. Zhang CL. Li MF. O'Rourke MF Effects of aging
on changing arterial compliance and left ventricular load in a northern
Chinese urban community. Circulation 1983 Jul;68(1):50-8
[33]Nichols WW. Avolio AP. O'Rourke MF Ascending aortic impedance patterns in
the kangaroo: their explanation and relation to pressure waveforms. Circ Res
1986 Sep;59(3):247-55
[34] Nichols WW. O'Rourke MF. Avolio AP. Yaginuma T. Pepine CJ. Conti CR
Ventricular/vascular interaction in patients with mild systemic hypertension
and normal peripheral resistance. Circulation 1986 Sep;74(3):455-62
[35]Karamanoglu M. Gallagher DE. Avolio AP. O'Rourke MF Pressure wave
propagation in a multibranched model of the human upper limb. Am J Physiol
1995 Oct;269(4 Pt 2):H1363-9
[36]Hunter W. Noordergraaf A Can impedance characterize the heart? J Appl
Physiol 1976 Feb;40(2):250-2
[37]Li JK. Melbin J. Riffle RA. Noordergraaf A Pulse wave propagation.Circ Res
1981 Aug;49(2):442-52
[38]Campbell KB. Rhode EA. Cox RH. Hunter WC. Noordergraaf A Am J Functional
consequences of expanded aortic bulb: a model study. Physiol 1981 Mar;240(3):
R200-10
[39]Li JK. Melbin J. Noordergraaf A Directional disparity of pulse reflection
in the dog.Am J Physiol 1984 Jul;247(1 Pt 2):H95-9
[40] Campbell KB. Lee LC. Frasch HF. Noordergraaf A Pulse reflection sites
and effective length of the arterial system. Am J Physiol 1989 Jun;256(6 Pt 2):
H1684-9
[41]Laskey WK. Parker HG. Ferrari VA. Kussmaul WG. Noordergraaf A Estimation
of total systemic arterial compliance in humans.
J Appl Physiol 1990 Jul;69(1):112-9
[42]Li JK. Noordergraaf A Similar pressure pulse propagation and reflection
characteristics in aortas of mammals. Am J Physiol 1991 Sep;261(3 Pt 2):R519-21
[43]Berger DS. Li JK. Laskey WK. Noordergraaf A Repeated reflection of waves
in the systemic arterial system. Am J Physiol 1993 Jan;264(1 Pt 2):H269-81
[44]Frasch HF. Kresh JY. Noordergraaf A Wave transmission and input impedance
of a model of skeletal muscle microvasculature. Ann Biomed Eng 1994 Jan-Feb;22(
1):45-57
[45]Berger DS. Li JK. Noordergraaf A Differential effects of wave reflections
and peripheral resistance on aortic blood pressure: a model-based study.
Am J Physiol 1994 Apr;266(4 Pt 2):H1626-42
[46]Berger DS. Li JK. Noordergraaf A Arterial wave propagation phenomena.
ventricular work. and power dissipation. Ann Biomed Eng 1995 Nov-Dec;23(6):804-
11
[47]Stergiopulos N. Young DF. Rogge TR Computer simulation of arterial flow
with applications to arterial and aortic
stenoses.J Biomech 1992 Dec;25(12):1477-88
[48]Stergiopulos N. Tardy Y. Meister JJ Nonlinear separation of forward and
backward running waves in elastic conduits.
J Biomech 1993 Feb;26(2):201-9
[49]Stergiopulos N. Meister JJ. Westerhof N Simple and accurate way for
estimating total and segmental arterial compliance: the pulse pressure method.
Ann Biomed Eng 1994 Jul-Aug;22(4):392-7
[50]Stergiopulos N. Meister JJ. Westerhof N Evaluation of methods for
estimation of total arterial compliance.Am J Physiol 1995 Apr;268(4 Pt 2):
H1540-8
[51]Stergiopulos N. Meister JJ. Westerhof N Scatter in input impedance
spectrum may result from the elastic nonlinearity of the arterial wall.Am J
Physiol 1995 Oct;269(4 Pt 2):H1490-5
[52] Stergiopulos N. Meister JJ. Westerhof N Determinants of stroke volume
and systolic and diastolic aortic pressure.Am J Physiol 1996 Jun;270(6 Pt 2):
H2050-9
[53]Pythoud F. Stergiopulos N. Westerhof N. Meister JJ Method for determining
distribution of reflection sites in the arterial system.Am J Physiol 1996 Nov;
271(5 Pt 2):H1807-13
[54] Stergiopulos N. Westerhof BE. Westerhof N Physical basis of pressure
transfer from periphery to aorta: a model-based study.Am J Physiol 1998 Apr;
274(4 Pt 2):H1386-92
[55]Stergiopulos N. Segers P. Westerhof N Use of pulse pressure method for
estimating total arterial compliance in vivo.Am J Physiol 1999 Feb;276(2 Pt 2):
H424-8
[56] Stergiopulos N. Westerhof BE. Westerhof N Total arterial inertance as
the fourth element of the windkessel model. Am J Physiol 1999 Jan;276(1 Pt 2):
H81-8
[57]Latham RD. Westerhof N. Sipkema P. Rubal BJ. Reuderink P. Murgo JP
Regional wave travel and reflections along the human aorta: a study with six
simultaneous micromanometric pressures.Circulation 1985 Dec;72(6):1257-69
[58]Latham RD. Rubal BJ. Westerhof N. Sipkema P. Walsh RA Nonhuman primate
model for regional wave travel and reflections along aortas. Am J Physiol 1987
Aug;253(2 Pt 2):H299-306
[59] Latham RD. Rubal BJ. Sipkema P. Westerhof N. Virmani R. Robinowitz M.
Walsh RA. Ventricular/vascular coupling and regional arterial dynamics in the
chronically
hypertensive baboon: correlation with cardiovascular structural adaptation.
Circ Res 1988 Oct;63(4):798-811
t;63(4):798-811