第 30 筆
國家圖書館索書號: 系統編號: 88NTU00442015
出版年: 民89
研究生: 詹明宜 Ming-Yie Jan
(以研究生姓名查詢國家圖書館索書號 ,未查獲者表國圖尚未典藏)
(以研究生姓名查詢國科會科資中心微片資料庫)
(連結至全國圖書聯合目錄) (連結至政大圖書館館藏目錄)
論文名稱: 動脈與微循環之血液動力學關聯性研究
論文名稱: A Study of the Relationship between Marcohemodynamics and
Microhemodynamics
指導教授: 王唯工 教授 Wei-Kung Wang, Ph.D.
學位類別: 博士
校院名稱: 國立臺灣大學
系所名稱: 電機工程學研究所
學號: D82503057
學年度: 88
語文別: 中文
論文頁數: 77
關鍵字: 血壓 blood pressure
血流 blood flow
高血壓 hypertension
血液動力學 hemodynamics
共振理論 resonance theory
氣血 Chi
雷射都卜勒血流計 Laser-Doppler blood
flowmeter
微循環 microcirculation
全文影像: (依著作權法相關規定,以下全文影像僅限國家圖書館館內下載)
封面
目錄
中文摘要
英文摘要
第一章 緒論
第二章 循環系統之血液動力學特性
第三章 近代血液動力學的回顧與徑向共振理論
第四章 動脈與微循環之血液動力學關聯性
第五章 脈動血壓波趨動微循環血流之效應及其高血壓之關聯
第六章 結論與未來方向
其他
[摘要]
根據根據世界衛生組織(World Health Organization, WHO)的報告,在已開發國家中,循
環系統疾病是最主要的死亡原因。在近代基礎循環力學的研究,大都以Navior-Stoke方程
式為基礎,從分析一小塊血液在主動脈的流動出發,研究循環系統中的血流。而動脈中的
血壓波則因為血液阻力及慣性而衰減;在主動脈中,當血壓波往下傳遞時,平均動脈血壓
值並沒有任何明顯的改變,但是血壓波的振幅卻明顯的增加。對此一現象,則認為是動脈
分枝及周邊循環阻抗會造成反射波疊加而成。如果血流的慣性力是循環系統中主要的作用
力,經過主動脈到周邊循環十幾階的分枝、網狀的微循環及反射波疊加,微循環中的血流
應該不是脈動的。
反之,從徑向共振理論出發,各個器官或動脈血管樹叢各有其共振頻率,經由長波長的動
脈血壓波藕合共振;藕合的動脈血壓波驅動在微循環中的血液流動。因此,微循環中的血
流應該是脈動的,且在同一器官或動脈血管樹叢中,微循環血流是同相的。
考慮血流的路徑,在循環系統中兩種型態與功能的極端關聯中:(1)血流量最大的腎臟皮質
表層微循環與腹主動脈血壓波,及(2)血流量最小的足部皮膚微循環與手橈動脈血壓波。以
雷射都普勒血流計量測微循環血流,並同步量測動脈血壓波。結果顯示,微循環中的血流
都是脈動的,而且同一組織內的微循環血流是同相的。這驗證了徑向共振理論與藕合共振
理論對體循環與微循環血液動力關聯性的推論。
研究中進一步探索脈動血壓波對末梢微循環的血流的驅動效率。研究中定義一微循環血流
及脈動血壓波面積比(Flux-to-Pressure-Area-Ratios, FPARs),以評估脈動血壓波中峰值
與較低血壓部分的效率差異。結果顯示脈動血壓之峰值是有較高的驅動效率的,且當血壓
波之脈動比(Blood Pressure Pulsatile Index, BPPI) 超過一定閾值時,脈動血壓波中峰
值的驅動效率會大幅增加。由此一結果推論,高血壓的成因可能是身體中的重要組織的周
邊血管組織變硬阻塞時,循環系統回饋調節以循環血流,因而大幅提升脈動血壓波的結果
。
[摘要]
According to the WHO report, in the developed countries, the circulatory
diseases are the main causes of death. In haemodynamic research, most
approaches based on the Navior-Stoke equation investigate the precise movement
of a small element of liquid in the artery. Meanwhile, both the viscous force
and inertial force would attenuate the blood pressure wave. However, the
pulsatile blood pressure is amplified from aorta to the downstream artery. The
strange phenomenon is regarded as by superposition of the reflected waves
generated by the vascular branches and the impedance of peripheral vascular
beds. If the flow does act the key role in the circulation, the peripheral
vascular fluxes, which have to flow through a complex network and be
interfered by the numerous reflected waves, would be constant and no phase
could be detected.
On the contrary, according to the radial resonance theory, each organ or
vascular bed has its own natural frequency; through the coupling by the long-
wavelength blood pressure, the peripheral vascular fluxe is driven by the
coupled blood pressure. Thus, it would be pulsatile and the fluxes in the same
vascular bed would be coherent.
In this study, refer to the blood pathway, there are two critical conditions
about the peripheral blood flux perfused by the arterial blood pressure.
First, the flux in the most perfused renal cortical surface relates to the
abdominal aortic blood pressure. Second, the flux in the skin of a foot
relates to the radial blood pressure. We used a laser Doppler flowmetry (LDF)
to measure the blood fluxes on different sites of the observed tissues and a
pressure transducer simultaneously measured the blood pressure waves. The
results show that the peripheral blood flux not only is pulsatile but also has
constant phase relation with arterial blood pressure; moreover, all blood
fluxes in the same tissue are coherent. It is coincident with the inference of
the radial resonance and the coupled resonance theory.
Furthermore, the driving efficience of the pulsatile blood pressure in renal
cortical surface was evaluated. We define a flux-to-pressure-area-ratio (FPAR)
to evaluate the efficiency that the pulsatile blood pressure drives the renal
cortical fluxe. The result shows that the higher the pulsatile blood pressure,
the more the driven flux is, and it seems that there is a threshold of blood
pressure pulsatile index (BPPI) that the driving efficiency would be amplified
abruptly. That implies the pulsatility plays a role in lowering the vessel
resistance of PVBs and it could also regulate the blood pressure in large
arteries. As a result, we further infer that if the precapillary openings are
obstructed or the peripheral blood vessels become stiffer the pulsatile
pressure will be induced to become higher so as to keep the blood perfusion
could be responsible for the hypertension.
[參考文獻]
參考文獻:
[1] 周禮,天官冢宰下篇,中國春秋時代。
[2] 黃帝內經,中國漢朝。
[3] 難經,中國漢朝。
[4] Patel DJ, Greenfield JC, Jr. and Carew TE: Static anisotropic elastic
properties of the aorta in living dogs. Circ. Res. 25: 765-9, 1969.
[5] Milnor WR: Hemodynamics (2nd ed.). Baltimore, MD, Williams & Wikins, 1989.
[6] Patel DJ and Fry DL: In situ pressure-radius-length measurements in
ascending aorta of anesthetized dogs. J. Appl. Physiol. 19: 413-6, 1964.
[7] Nichols WW and O'Rourke MF: McDonald's Blood Flow in Arteries (3rd ed.).
London, Edward Arnold, 1990.
[8] Zweifach BW: Quantitative studies of microcirculatory structure and
function. I. Analysis of pressure distribution in the terminal vascular bed in
cat mesentery. Circ. Res. 34: 843-57, 1974.
[9] Intaglietta M, Pawula RF and Tompkins WR: Pressure measurements in the
mammalian microvasculature. Microvasc. Res. 2: 212-20, 1970.
[10] Nichols WW, Conti CR, Walker WE and Milnor WR: Input impedance of the
systemic circulation in man. Circ. Res. 40: 451-8, 1977.
[11] Kaley G and Altura BM (eds.): Microcirculation (Volume I). Baltimore,
University Park Press, 1977.
[12] Womersley JR: Oscillatory motion of a viscous fluid in a thin-walled
elastic tube. I. The linear approximation for long wave. Phil. Mag. 46: 199-
221, 1955.
[13] O'Rourke MF, Safer ME and Dzau VJ (eds.): Arterial Vasodilation:
Mechanism and therapy. Philadelphia, LEA & FEBIGER, 1993.
[14] Wang Lin YY, Chang CC, Chen JC, Hsu TL and Wang WK: Pressure wave
propagation in a simplified artery with large radial dilation. IEEE Engineering
Med. & Biol. Magazine 16(1): 51-6, 1997.
[15] Wang Lin YY, Chang SL, Wu YE, Hsu TL and Wang WK: Resonance, the missing
phenomenon in hemodynamics. Circ. Res. 69:246-9, 1991.
[16] Wang WK, Hsu TL, Chen HL, Jan MY and Wang Lin YY: Blood pressure and
velocity relation in tissue. In Liepsch D (ed): Biofluid Mechanics, Proc of
the third International Symposium, Munich, Germany, July 16-19, pp 119-32,1994.
[17] Nellis SH and Lee JS: Dispersion of indicator measured from microvessels
of cat mesentery. Circ. Res. 35:580-91, 1974.
[18] Yu GL, Wang Lin YY and Wang WK: Resonance in the kidney system of rats.
Am. J. Physiol. 267:H1544-8, 1994.
[19] Wang WK, Lo YY, Hsu TL and Wang Lin YY: Resonance of organs with the
heart. In: Young WJ (ed): Biomedical Engineering, an International Symposium,
pp. 259-97, New York, Hemisphere Publishing Corp, 1989.
[20] Wang WK and Wang Lin YY: The biomedical engineering basis of traditional
Chinese medicine. Med. Prog. Thr. Techno. 18:191-7, 1992.
[21] Wang WK, Wang Lin YY, Chiang Y, Yu GL and Hsu TL: The effect of resonance
on blood pressure. In: Proc. of the 7th International Conference on Biomedical
Engineering. Singapore, Dec 2-4, pp 367-9, 1992.
[22] Young ST, Wang WK, Chang SL and Kao TS: Specific frequency properties of
renal and superior mesenteric arterial beds in rats. Cardiovasc. Res. 23:456-
67, 1989.
[23] Young ST, Wang WK, Chang SL and Kao TS: The filter properties of the
arterial beds of organs in rats. Acta. Physiol. Scand. 145:401-6, 1992.
[24] Guyton AC and Hall JE: Textbook of medical physiology (9th ed.).
Philadelphia, W.B. SAUNDERS, 1996.
[25] Shepherd AP and Oberg PA (eds): Laser-Doppler blood flowmetry. Boston,
Kluwer Academic Publishers, 1990.
[26] Tyml K and Ellis CG: Simultaneous assessment of red cell perfusion in
skeletal muscle by laser Doppler flowmetry and video microscopy. Int. J.
Microcirc.: Clin. Exp. 4: 397-406,1985.
[27] Roman RJ: Renal blood flow. In: Shepherd AP and Oberg PA (eds.): Laser-
Doppler flowmetry. Boston, Kluwer Academic Publisher, pp.289-304, 1989.
[28] Jan MY, Hsiu H, Hsu TL, Wang Lin YY and Wang WK: Measurement and analysis
of the pulsatile renal cortical fluxes in rats with a Laser-Doppler Flowmetry.
J. of Biomedical Engineering: Applications, Basis and Communcation, accepted,
1999.
[29] Intaglietta M, Tompkins WR and Richardson DR: Velocity measurement in the
microvasculature of the cat omentum by on-line method. Microvasc. Res. 2: 462-
73, 1970.
[30] Challis RE and Kitney RI: Biomedical signal processing, part 1:Time-
domain methods. Med. & Biol. Eng. & Comput. 28: 509-24, 1990.
[31] Gross JF: The significance of pulsatile microhemodynamics. In: Kaley G
and Altura BM (eds): Microcirculation (Volume I). Baltimore, University Park
Press, 365-90, 1977.
[32] Lee JJ, Tyml K, Menkis AH, Novick RJ and Mckenzie FN: Evaluation of
pulsatile and nonpulsatile flow in capillaries of goat skeletal muscle using
intravital microscopy. Microvasc. Res. 48: 316-27, 1994.
[33] Wiederhielm CA, Woodbury TW and Rushmer RF: Pulsatile pressure in the
microcirculation of the frog's mesentery. Am. J. Physiol. 207:173-6, 1964.
[34] Nichols WW and O'Rourke MF: McDonald's Blood Flow in Arteries (4th ed.).
London, Edward Arnold, 1998.
[35] Holstein-Rathlou NH and Marsh DJ: Renal blood flow regulation and
arterial pressure fluctuation: a case study in nonlinear dynamics. Physiol.
Rev. 74(3): 637-81, 1994.
[36] Gaehtgens PA, Meiselman HJ and Wayland H: Erythrocyte flow velocities in
mesenteric microvessels of the cat. Microvasc. Res. 2: 151-62, 1970.
[37] Weidenhagen R, Wichmann Aiga, Koebe HG, Lauterjung L, Furst H and Messmer
K: Analysis of Laser Doppler flux motion in man: comparison of autoregressive
modeling and fast Fourior transformation. Int. J. Microcirc. Clin. Exp.16:64-
73, 1996.
[38] Hoffmann U, Franzeck UK, Geiger M, Yanar A and Bollinger A: Variability
of different patterns of skin oscillatory flux in healthy controls and
patients with peripheral arterial occlusive disease. Int. J. Micricirc. Clin.
Exp. 12: 225-73, 1993.
[39] Camm AJ: Cardiovascular disease. In: Kumar P and Clark M (eds.): Clinical
Medicine (4th ed.), chapter 10. London, W.B. Saunders, 1998.
[40] Whitmore RL: Rheology of the circulation. Oxford, Pergamon Press, 1968.
[41] Pries AR, Secomb TW and Gaehtgens P: Biophysical aspects of blood flow in
the microvasculature. Cardiovasc. Res. 32: 654-67, 1996
[42] Song H and Tyml K: Evidence for sensing and integration of biological
signals by capillary network. Am. J. Physiol. 265: H1242-53, 1993.
[43] Zadar PR, Chien S and Skalak R: Interaction of a viscous incompressible
fluid with an elastic body. In: Belytschko T and Geers TL (eds.): Computational
Methods for Fluid-Structure Interaction Problems, pp. 365-376. New York,
Springer-Verlag, 1977.
[44] Cokelet GR: Rheology and hemodynamics. Annu. Rev. Physiol. 42: 311-24,
1980.
[45] Hochmuth RM: Properties of red blood cells. In: Skalak R and Chien, S. (
eds.): Handbook of Bioengineering, chapter 12. New York, McGraw-Hill, 1987.
[46] Skalak R and Zhu C: Rheological aspects of red blood cell aggregation.
Biorheology 27: 309-25, 1990.
[47] Schmid-Schonbein GW: Rheology of leukocytes. In: Skalak R and Chien S (
eds.): Handbook of Bioengineering, chapter 13. New York, McGraw-Hill, 1987.
[48] Kay SM: Modern spectral estimation: theory and application. New Jersey,
Prentice Hall, 1988.
----------------
第 34 筆
國家圖書館索書號: 系統編號: 87NTU00442053
研究生: 陳美全 Chen Mei-Chuan
(以研究生姓名查詢國家圖書館索書號 ,未查獲者表國圖尚未典藏)
(以研究生姓名查詢國科會科資中心微片資料庫)
(連結至全國圖書聯合目錄) (連結至政大圖書館館藏目錄)
論文名稱: 與心跳同步微弱電刺激器之研製
論文名稱: Heartbeat Synchronized Electrical Stimulator with Low
Stimulating Current
指導教授: 王唯工 W.K. Wang
學位類別: 碩士
校院名稱: 國立臺灣大學
系所名稱: 電機工程學研究所
學號: R86921042
學年度: 87
語文別: 英文
論文頁數: 41
關鍵字: 乳酸 lactate
刺激器 stimulator
心電圖 ECG
R波 R wave
雷射都普勒血流計 LDF
[摘要]
現代人由於生活忙碌、緊張以及缺乏運動等因素,很多人年紀輕輕就有局部循環不良而酸
痛的問題,如肩膀酸痛、腰酸及下背痛等等,引起這些不適的原因很複雜,疼痛發生的機
制也還未為人所熟知。
一般而言,發生酸痛的部位通常都有局部缺氧的現象,也有人研究發現缺氧的組織中乳酸
分子的濃度與正常部位的濃度有所不同,所以局部乳酸濃度的變化應能反映出生理裡狀況
的異常,我們並認為乳酸的極性特性可能在生理上具有極大的意義,身體上多種電訊號如
心電圖、肌電圖等可利用這種特性疏通循環,本研究的重點是欲設計出與心電圖中R wave
同步的電刺激器,以做為心電圖R Wave 的增幅器,針對乳酸具有大dipole的特性,對局部
施予微弱的電刺激,期其能參與並輔助心電圖疏通循環的效果;為了觀察是否有疏通阻塞
、改善微循環之效果,吾人亦進行一組實驗,利用一組雷射都普勒血流計量取刺激局部的
血流訊號,以瞭解此種微弱電刺激對局部微循環的影響,我們並可由實驗結果看出此種與
心電圖中R waves同步的微弱電刺激器的確能有效的改善局部微循環,我們希望能以此研究
作為基礎,而在將來開發出有效改善微循環進而治療酸痛的醫療器材。
[摘要]
In modern life, low-back pain, neckaches and other kinds of pain have become
one of the most troubling problems. Pressure and busy lives make many young
persons have these problems. The real causes of these types of discomfort are
very complicated and not yet clear. The mechanisms of pains are also not
completely understood.
Generally, the spots of chronic pain or many other health problems often are
ischemic, and when somewhere in our bodies was in ischemia, the local
concentration of lactate changed. Therefore, the local change of the
concentration of lactate may associate with the physiological abnormality in
human. In other words, the concentration of lactate could be one kind of
indicators of some health problems. We also considered the characteristic of
large dipole of lactate is very important in physiology. As a result, the
electrical field from ECG or EMG, which is acting as the stepping potential,
can easily switch the blockage that causes the ischemia.
Our study is to implement the heartbeat synchronized electrical stimulator,
the stimulator we designed acts as an amplifier of the R waves in ECG. And we
use the LDF to conduct an experiment to observe the effects of the heartbeat
synchronized electrical stimulator on microcirculation. As the results of the
experiments, the effects of heartbeat synchronized electrical stimulator with
low stimulating current on microcirculation was evident. We hoped we could
develop a potent apparatus in the future.
[論文目次]
Chinese Abstract
English Abstract
Chapter 1 Introduction
1.1 Introduction
1.2 Motivation
1.3 Organization of the thesis
Chapter 2 Theory
2.1 Introduction to lactate
2.2 The study of a simple fluid composition analysis by electrode method
2.3 The study of the electro-dermal diagnostic system
2.4 Introduction to ECG
2.5 Electrodes
Chapter 3 Heartbeat Synchronized Electrical Stimulator Design
3.1 System overview
3.2 Pre-amplifier
3.3 60HZ notch filter
3.4 R wave detector
3.5 The other circuits
3.6 The results of measurement
Chapter 4 Experiment
4.1 Instruments
4.2 Subjects
4.3 Experimental protocol
4.4 Data analysis
4.5 Statistics
Chapter 5 Results
5.1 The effects of the heartbeat synchronized electrical stimulator on
microcirculation
5.2 Statistics
Chapter 6 Conclusions
6.1 The implementation of the circuit designs
6.2 The effects of the heartbeat synchronized electrical stimulator on
microcirculation
6.3 Conclusions
Bibliography
[參考文獻]
[1] Richard A, Deyo, " Low-Back Pain", Scientific American, August 1998, pp.
28-33.
[2] Jay B. Brodsky, and James B. D. Mark, " Postthoracoscopy Pain: Is TENS the
Answer", Ann Thorac Surg 63, 1997, pp. 608-610.
[3] Deirdre M. Walsh, Andrea S. Lowe, Kenneth McCormack, Jean-Claude Willer,
G. David Baxter, and Jim M. Allen, " Transcutaneous Electrical Nerve
Stimulation: Effect on Peripheral Nerve Conduction, Mechanical Pain Threshold,
and Tactile Threshold in Humans", Arch Phys Med Rehabil, vol 79, September
1998, pp. 1051-1058.
[4] Wayne W. Fisher, Lynn G. Bowman, Rachel H. Thompson, and Stephanie A.
Contrucci, " Reductions in Self-Injury Produced by Transcutaneous Electrical
Nerve Stimulation", Journal of Applied Behavior Analysis, 31, 1998, pp. 493-
496.
[5] Walsh DM, " TENS: Clinical Applications and Related Theory", Edinburgh
Churchill Livingstone, 1997.
[6] Lei Chen, Jun Tang, Paul F. White, Alexander Sloninsky, Ronald H. Wender,
Robert Naruse, and Robert Kariger, " The Effect of Location of Transcutaneous
Electrical Nerve Stimulation on Postoperative Opioid Analgesic Requirement:
Acupoint Versus Nonacupoint Stimulation", Anesth Analg, 87, 1998, pp. 1129-
1134.
[7] Melzack R, Wall PD, " Pain Mechanisms: A New Theory", Science, 150, 1965,
pp. 971-979.
[8] Richard Ohrbach and Elliot N. Gale, " Pressure Pain Thresholds in Normal
Muscles: Reliability, Measurement Effects, and Topographic Differences", Pain,
37, 1989, pp. 257-263.
[9] G. C. Wang, H. Hsiu, Y. Chiang and Y. Y. Lin Wang, " A Simple Fluid
Composition Analysis by Electrode Method", Submitted to IEEE transaction of
Biomrdical Engineering.
[10] John G. Webster, " Medical Instrumentation", John Wiley & Sons, Inc.
[11] W, K, Wang, H. Hsiu, Y. Chiang, G. C. Wang, and Y. Y. Lin Wang, " The
Measurement of the Electro-Dermal Diagnostic System".
[12] Campbell, " Biochemistry", 3rd edition, Saunders College.
[13] Eva Hagstorm-Toft, Staffan Enoksson, Erik Moberg, Jan Bolinder, and Peter
Arner, " Absolute Concentrations of Glycerol and Lactate in Human Skeletal
Muscle, Adipose Tissue, and Blood", The American Physiological Society, 1997,
pp. 584-592.
[14] Wills J. Tompkins, " Biomedical Digital Signal Processing - C-Language
Examples and Laboratory Experiments for the IBM PC", Prentice-Hall.
[15] Jules Conatant, " Learning Electrocardiography", Little, Brown Company (
Inc.).
[16] Rosell, J. J. Colominas, P. Pallas-Areny, and J. G. Webster, " Skin
Impedance from 1Hz to 1 MHz", IEEE Trans. Biomed. Eng. 35, 1998, pp. 649-651.
[17] E. J. Woo, P. Hua, J. G. Webster, W. J. Tompkins, R. Pallas-Areny, " Skin
Impedance Measurements Using Simple and Compound Electrodes", Med. & Biol.
Eng. & Comput, 30, 1992, pp. 97-102.
[18] W. K. Wang, T. L. Hsu, H. C. Chang and Y. Y. Lin Wang, " Effect of
Acupuncture at Tsu San Li (St 36) on the Pulse Spectrum", Am. J. of Chin. Med.
23 (2), 1995, pp. 121-130.
[19] V. S. Letokhov, " Laser Biology and Medicine", Nature 316, 1985, pp. 325-
329.
[20] R. Weidenhagen, Aiga Wichmann, H. G. Koebe, L. Lauterjung, H. Furst, and
K. Messmer, " Analysis of Laser Doppler Flux Motion in Man: Comparison of
Autoregressive Modelling and Fast Fourier Transformation", Int J Microcirc,
16, 1996, pp. 64-73.
[21] M. Y. Jan, J. J. Shyu, H. Hsiu, Y. Y. Lin Wang, W. K. Wang, " Coherence
Between the Pulsatile Aortic Blood Pressure and the Renal Cortical Flux in
Dogs ".
[22] K. J. Chen, " The Acupuncture Effect on the Pulse Spectrum and the
Microcirculation - Interpretation by Transmission Line Model", Master's
thesis, Department of Electrical Engineering National Taiwan University,
Taipei, Taiwan, Republic of China, July 1998.
[23]實用經穴學,陳怡魁編著